把一条线段分割为两部分,使其中一部分与全长之比等于另一部分与这部分之比。其比值是一个无理数,用分数表示为(√5-1)/2,取其前三位数字的近似值是0.618。由于按此比例设计的造型十分美丽,因此称为黄金分割,也称为中外比。这个分割点就叫做黄金分割点(golden
section
ratio通常用φ表示)这是一个十分有趣的数字,我们以0.618来近似表示,通过简单的计算就可以发现:(1-0.618)/0.618=0.6一条线段上有两个黄金分割点。
黄金分割律,又名黄金率,即把已知线段分成两部分,使其中一部分对于全部的比等于其余一部分对于这部分的比。最基本的公式就是把1分割成0.618与0.382,尔后再依据实际情况变化,再演变成其他的计算公式。
黄金分割律是公元前六世纪,希腊的大数学家毕达哥拉斯发现的。它的基本内容可以这样解释:如果把一条线段分成两部分,长段和短段的长度之比是1:0.618,整条线段和长段的比也是1:0.618时,才是和黄金一样最完美的分割,进行分割的这个点就叫黄金分割点。
计算公式(5^0.5-1)/2=(2.236-1)/2=0.618