|1/(x-1)-1|=|(x-2)/(x-1)|任取一个正数0<ε<1/5,取δ=ε/2,可得,当|x-2|<δ=ε/2时,x-1∈(-ε/2+1,ε/2+1)由ε<1/5得,-ε/2>-1/10,-ε/2+1>9/10,所以x-1>9/10,1/|x-1|<10/9<2又|(x-2)/(x-1)|=|(x-2)|/|(x-1)|<2|x-2|<2*δ=ε,即|(x-2)/(x-1)|<ε所以lim[ 1/(x-1)](x→2)=1