极限的常用公式

2024-12-29 21:03:30
推荐回答(4个)
回答1:

1、e^x-1~x (x→0) 

2、 e^(x^2)-1~x^2 (x→0)

3、1-cosx~1/2x^2 (x→0)

4、1-cos(x^2)~1/2x^4 (x→0)

5、sinx~x (x→0)

6、tanx~x (x→0)

7、arcsinx~x (x→0)

8、arctanx~x (x→0)

9、1-cosx~1/2x^2 (x→0)

10、a^x-1~xlna (x→0)

11、e^x-1~x (x→0)

12、ln(1+x)~x (x→0)

13、(1+Bx)^a-1~aBx (x→0)

14、[(1+x)^1/n]-1~1/nx (x→0)

15、loga(1+x)~x/lna(x→0)

扩展资料:

函数极限当分母等于零时,就不能将趋向值直接代入分母,可以通过下面几个小方法解决:

1、第一:因式分解,通过约分使分母不会为零。

2、第二:若分母出现根号,可以配一个因子使根号去除。

3、第三:以上我所说的解法都是在趋向值是一个固定值的时候进行的,如果趋向于无穷,分子分母可以同时除以自变量的最高次方。(通常会用到这个定理:无穷大的倒数为无穷小)

极限的性质

1、唯一性:若数列的极限存在,则极限值是唯一的,且它的任何子列的极限与原数列的相等。

2、有界性:如果一个数列’收敛‘(有极限),那么这个数列一定有界。

但是,如果一个数列有界,这个数列未必收敛。例如数列 :“1,-1,1,-1,……,(-1)^n+1”

回答2:

1、e^x-1~x (x→0)
2、 e^(x^2)-1~x^2 (x→0)
3、1-cosx~1/2x^2 (x→0)
4、1-cos(x^2)~1/2x^4 (x→0)
5、sinx~x (x→0)
6、tanx~x (x→0)
7、arcsinx~x (x→0)
8、arctanx~x (x→0)
9、1-cosx~1/2x^2 (x→0)
10、a^x-1~xlna (x→0)
11、e^x-1~x (x→0)
12、ln(1+x)~x (x→0)
13、(1+Bx)^a-1~aBx (x→0)
14、[(1+x)^1/n]-1~1/nx (x→0)
15、loga(1+x)~x/lna(x→0)

回答3:

一个等价无穷小式子中的三个位置上的x用同一个函数替换。
e^x-1~x (x→0), e^(x^2)-1~x^2 (x→0)。
1-cosx~1/2x^2 (x→0),1-cos(x^2)~1/2x^4 (x→0)。
是否可以解决您的问题?

回答4:

这个有很多这样的公式,不知道您选择哪一种,我建议您去实地考察。