如图,△ABC内接于⊙O,AB=AC,过点A作BC的平行线与BO的延长线交于点P.(1)求证:AP是⊙O的切线;(2)

2024-12-12 11:42:38
推荐回答(1个)
回答1:

解:(1)连接OA并延长,交BC于点D,
∵AB=AC,

AB
=
AC

∴AD⊥BC,
∵AP∥BC,
∴AP⊥OA,
则AP是圆O的切线;
(2)∵AB=AC,AD⊥BC,
∴BD=CD=
1
2
BC=3,
在Rt△OBD中,OB=5,BD=3,
根据勾股定理得:OD=
OB2?BD2
=4,
∵AP∥BC,
∴∠P=∠OBD,∠PAO=∠ODB,
∴△AOP∽△DOB,
AP
BD
=
OA
OD
,即
AP
3
=
5
4

则AP=
15
4