蝴蝶效应(TheButterflyEffect)是指在一个动力系统中,初始条件下微小的变化能带动整个系统的长期的巨大的连锁反应。这是一种混沌现象。
任何事物发展均存在定数与变数,事物在发展过程中其发展轨迹有规律可循,同时也存在不可测的“变数”,往往还会适得其反,一个微小的变化能影响事物的发展,说明事物的发展具有复杂性。
美国气象学家爱德华·洛伦兹(EdwardN.Lorenz)于1963年,在一篇提交纽约科学院的论文中分析了这个效应。
蝴蝶效应是指在一个动力系统中,初始条件下微小的变化能带动整个系统的长期的巨大的连锁反应。它是一种混沌现象,说明了任何事物发展均存在定数与变数,一个微小的变化能影响事物的发展,证实了事物的发展具有复杂性。
之所以叫蝴蝶效应是因为,蝴蝶扇动翅膀的运动,导致其身边的空气系统发生变化,并产生微弱的气流,而微弱的气流的产生又会引起四周空气或其他系统产生相应的变化,由此引起一个连锁反应,最终导致其他系统的极大变化。
扩展资料
美国气象学家爱德华·罗伦兹(Edward N.Lorenz)1963年在一篇提交纽约科学院的论文中分析了这个效应。“一个气象学家提及,如果这个理论被证明正确,一只海鸥扇动翅膀足以永远改变天气变化。”在以后的演讲和论文中他用了更加有诗意的蝴蝶。
对于这个效应最常见的阐述是:“一只南美洲亚马逊河流域热带雨林中的蝴蝶,偶尔扇动几下翅膀,可以在两周以后引起美国得克萨斯州的一场龙卷风。”其原因就是蝴蝶扇动翅膀的运动,导致其身边的空气系统发生变化,并产生微弱的气流,而微弱的气流的产生又会引起四周空气或其他系统产生相应的变化,由此引起一个连锁反应。
最终导致其他系统的极大变化。他称之为混沌学。当然,“蝴蝶效应”主要还是关于混沌学的一个比喻。也是蝴蝶效应的真实反应。不起眼的一个小动作却能引起一连串的巨大反应。
蝴蝶效应,指在一个动力系统中,初始条件下微小的变化能带动整个系统的长期的巨大的连锁反应。
蝴蝶效应是一种混沌现象,说明了任何事物发展均存在定数与变数,事物在发展过程中其发展轨迹有规律可循,同时也存在不可测的“变数”,往往还会适得其反,一个微小的变化能影响事物的发展,证实了事物的发展具有复杂性。
美国气象学家爱德华·洛伦兹于1963年,在一篇提交纽约科学院的论文中分析了这个效应。
扩展资料:
理论由来:
美国气象学家爱德华·洛伦兹1963年在一篇提交纽约科学院的论文中分析了这个效应。“一个气象学家提及,如果这个理论被证明正确,一只海鸥扇动翅膀足以永远改变天气变化。”在以后的演讲和论文中他用了更加有诗意的蝴蝶。
对于这个效应最常见的阐述是:“一只南美洲亚马逊河流域热带雨林中的蝴蝶,偶尔扇动几下翅膀,可以在两周以后引起美国得克萨斯州的一场龙卷风。”
其原因就是蝴蝶扇动翅膀的运动,导致其身边的空气系统发生变化,并产生微弱的气流,而微弱的气流的产生又会引起四周空气或其他系统产生相应的变化,由此引起一个连锁反应,最终导致其他系统的极大变化。他称之为混沌学。
当然,“蝴蝶效应”主要还是关于混沌学的一个比喻。也是蝴蝶效应的真实反应。不起眼的一个小动作却能引起一连串的巨大反应。
蝴蝶效应(TheButterflyEffect)是指在一个动力系统中,初始条件下微小的变化能带动整个系统的长期的巨大的连锁反应。
1、“蝴蝶效应”主要还是关于混沌学的一个比喻。也是蝴蝶效应的真实反应。不起眼的一个小动作却能引起一连串的巨大反应。
2、罗伦兹认定,他发现了新的现象:事物发展的结果,对初始条件具有极为敏感的依赖性。他于是认定这为:“对初始值的极端不稳定性”,即:“混沌”,又称“蝴蝶效应”。
扩展资料
某地上空一只小小的蝴蝶扇动翅膀而扰动了空气,长时间后可能导致遥远的彼地发生一场暴风雨,以此比喻长时期大范围天气预报往往因一点点微小的因素造成难以预测的严重后果。
微小的偏差是难以避免的,从而使长期天气预报具有不可预测性或不准确性。这如同打台球、下棋及其他人类活动,往往“差之毫厘,谬以千里”、“一招不慎,满盘皆输”。长时期大范围天气预报是对于地球大气这个复杂系统进行观测计算与分析判断。
它受到地球大气温度、湿度、压强诸多随时随地变化的因素的影响与制约,可想其综合效果的预测是难以精确无误的、蝴蝶效应是在所难免的。我们人类研究的对象还涉及到其他复杂系统(包括“自然体系”与“社会体系”),其内部也是诸多因素交相制约错综复杂,其“相应的蝴蝶效应”也是在所难免的。
“今天的蝴蝶效应”或者“广义的蝴蝶效应”已不限于当初洛仑兹的蝴蝶效应仅对天气预报而言,而是一切复杂系统对初值极为敏感性的代名词或同义语。
参考资料来源:百度百科——蝴蝶效应
蝴蝶效应指在一个动力系统中,初始条件下微小的变化能带动整个系统的长期的巨大的连锁反应。
蝴蝶效应是一种混沌现象,说明了任何事物发展均存在定数与变数,事物在发展过程中其发展轨迹有规律可循,同时也存在不可测的“变数”,往往还会适得其反,一个微小的变化能影响事物的发展,证实了事物的发展具有复杂性。
扩展资料
实际应用——
蝴蝶效应通常用于天气、股票市场等在一定时段难以预测的比较复杂的系统中。如果这个差异越来越大,那这个差距就会形成很大的破坏力。这就是为什么天气或者是股票市场会有崩盘和不可预测的自然灾害。
蝴蝶效应在社会学界用来说明:一个微小的机制,如果不加以及时地引导、调节,可能会给社会带来非常大的危害,戏称为“龙卷风”或“风暴”;一个微小的机制,只要正确指引,经过一段时间的努力,将有可能会产生轰动效应,或称为“革命”。