什么是光程差

什么是光程差
2024-12-30 00:54:29
推荐回答(5个)
回答1:

光程差即为两束光光程之差,是将光传播的几何距离与光波的振动的性质整合在一起的重要物理量,在几何光学和波动光学中光的干涉、衍射及双折射效应等的推导过程中都具有重要意义。

在波动光学中,两束光的相位差成为了主要的研究对象,而光在不同介质之中传播是频率不变而波长会发生改变,因而相位关系也就不同。光程差整合了传播路径这一几何特征量和介质中光的波动性质的变化,利用真空折合距离差这一相同标准,可以计算出不同距离不同介质中传播的两束光的相位差。

扩展资料

光程与光程差作为光学中的基础量,在几何光学和波动光学中光的干涉、衍射及双折射效应等的推导过程中都具有重要意义和应用。

光程是光学领域的一个基础概念,其定义为光传播的几何路程与介质折射率的乘积。

参考资料来源:百度百科-光程差

回答2:

光程差是:两束光光程之差,在几何光学和波动光学中光的干涉、衍射及双折射效应等的推导过程中都具有重要意义。

在波动光学中,两束光的相位差成为了主要的研究对象,而光在不同介质之中传播是频率不变而波长会发生改变,因而相位关系也就不同。

光程差整合了传播路径这一几何特征量和介质中光的波动性质的变化,利用真空折合距离差这一相同标准,可以计算出不同距离不同介质中传播的两束光的相位差。

扩展资料

薄膜干涉两相干光的光程差公式为:Δ=ntcos(α) ± λ/2

式中n为薄膜的折射率;t为入射点的薄膜厚度;α为薄膜内的折射角;λ/2是由于两束相干光在性质不同的两个界面(一个是光疏介质到光密介质,另一个是光密介质到光疏介质)上反射而引起的附加光程差。

薄膜干涉原理广泛应用于光学表面的检验、微小的角度或线度的精密测量、减反射膜和干涉滤光片的制备等。

光是由光源中原子或分子的运动状态发生变化辐射出来的,每个原子或分子每一次发出的光波,只有短短的一列,持续时间约为10亿秒对于两个独立的光源来说,产生干涉的三个条件,特别市相位相同或相位差恒定不变这个条件,很不容易满足,

所以两个独立的一般光源是不能构成相干光源的。不仅如此,即使是同一个光源上不同部分发出的光,由于它们是不同的原子或分子所发出的,一般也不会干涉。

参考资料来源:百度百科-光程差

回答3:

光程差(optical path difference)顾名思义,即为两束光光程之差,在几何光学和波动光学中光的干涉、衍射及双折射效应等的推导过程中都具有重要意义。

光程(optical path)是光学领域的一个基础概念,其定义为光传播的几何路程与介质折射率的乘积。

扩展资料

光程与光程差在几何光学和波动光学中光的干涉、衍射及双折射效应等的推导过程中都具有重要意义和应用。

一、费马原理

费马(Feramt)在1657年首次提出了最短传播时间原理,后称之为费马原理:在给定的两点间,光沿所需时间最短的路径传播,即:光总是沿光程最小的路径传播。

费马原理是几何光学最基础的公理,光在同一介质中沿直线传播,光的反射定律及光的折射定律等基本规律都是通过费马原理推导出的。其揭示了光的传播路径与光程的关系。

二、光的干涉

相干光相互叠加会出现明暗交替的干涉条纹,可以通过光程差来计算干涉条纹的特征。

参考资料来源:百度百科-光程差

参考资料来源:百度百科-光程

回答4:

光程是指介质的折射率n乘以光在介质中走过的距离L。

光程差是两束光在介质中光程相减,即Δ=n*L2-n*L1。在研究两束光发生干涉时要用到该物理量。

光发生干涉,当光程差是光在真空中波长的整数倍时,Δ=nλ(n为整数),相位差为2nπ,相长干涉,光变强。当光程差是光在真空中波长的半整数倍,即Δ=(n+1/2)λ,相位差为(2n+1)π,相消干涉。从而出现明暗相间的干涉条纹。

回答5:

光程是指介质的折射率n乘以光在介质中走过的距离L。

光程差是两束光在介质中光程相减,即Δ=n*L2-n*L1。在研究两束光发生干涉时要用到该物理量。

光发生干涉,当光程差是光在真空中波长的整数倍时,Δ=nλ(n为整数),相位差为2nπ,相长干涉,光变强。当光程差是光在真空中波长的半整数倍,即Δ=(n+1/2)λ,相位差为(2n+1)π,相消干涉。从而出现明暗相间的干涉条纹。光程与光程差

干涉现象的产生,决定于两束相干光波的位相差。当两相干光都在同一均匀媒质中传播时,它们在相遇处叠加时的位相差,仅决定于两光之间的几何路程之差。但是,在当两束相干光通过不同的媒质时,两相干光间的位相差就不能单纯由它们的几何路程之差来决定。

光在介质中传播几何路程为r,相应的位相变化为

当光在不同的媒质中传播时,即使传播的几何路程相同,而位相的变化是不同的。

设从同位相的相干光源S1和S2发出的两相干光,分别在折射率为n1和n2的媒质中传播,相遇点P与光源S1和S2的距离分别为r1和r2,则两光束到达P点的位相变化之差为