假设检验一般分为五个步骤:
①建立假设:包括:H0,称无效假设;H1:称备择假设;
②.确定检验水准:检验水准用α表示,α一般取0.05;
③.计算检验统计量:根据不同的检验方法,使用特定的公式计算;
④确定P值:通过统计量及相应的界值表来确定P值;
⑤推断结论:如P>α,则接受H0,差别无统计学意义;如P≤α,则拒绝H0,差别有统计学意义。
什么是假设检验:假设检验(Hypothesis Testing)是数理统计学中根据一定假设条件由样本推断总体的一种方法。具体作法是:根据问题的需要对所研究的总体作某种假设,记作H0;选取合适的统计量,这个统计量的选取要使得在假设H0成立时,其分布为已知;由实测的样本,计算出统计量的值,并根据预先给定的显著性水平进行检验,作出拒绝或接受假设H0的判断。常用的假设检验方法有u—检验法、t检验法、χ2检验法(卡方检验)、F—检验法,秩和检验等。
假设检验的基本步骤如下:
1、提出检验假设又称无效假设,符号是H0;备择假设的符号是H1。
H0:样本与总体或样本与样本间的差异是由抽样误差引起的;
H1:样本与总体或样本与样本间存在本质差异;
预先设定的检验水准为0.05;当检验假设为真,但被错误地拒绝的概率,记作α,通常取α=0.05或α=0.01。
2、选定统计方法,由样本观察值按相应的公式计算出统计量的大小,如X2值、t值等。根据资料的类型和特点,可分别选用Z检验,T检验,秩和检验和卡方检验等。
3、根据统计量的大小及其分布确定检验假设成立的可能性P的大小并判断结果。若P>α,结论为按α所取水准不显著,不拒绝H0,即认为差别很可能是由于抽样误差造成的,在统计上不成立;如果P≤α,结论为按所取α水准显著,拒绝H0,接受H1,则认为此差别不大可能仅由抽样误差所致,很可能是实验因素不同造成的,故在统计上成立。P值的大小一般可通过查阅相应的界值表得到。
教学中的做法:
1.根据实际情况提出原假设和备择假设;
2.根据假设的特征,选择合适的检验统计量;
3.根据样本观察值,计算检验统计量的观察值(obs);
4.选择许容显著性水平,并根据相应的统计量的统计分布表查出相应的临界值(ctrit);
5.根据检验统计量观察值的位置决定原假设取舍。
假设检验的基本步骤如下:
1、提出检验假设又称无效假设,符号是H0;备择假设的符号是H1。
H0:样本与总体或样本与样本间的差异是由抽样误差引起的;
H1:样本与总体或样本与样本间存在本质差异;
预先设定的检验水准为0.05;当检验假设为真,但被错误地拒绝的概率,记作α,通常取α=0.05或α=0.01。
2、选定统计方法,由样本观察值按相应的公式计算出统计量的大小,如X2值、t值等。根据资料的类型和特点,可分别选用Z检验,T检验,秩和检验和卡方检验等。
3、根据统计量的大小及其分布确定检验假设成立的可能性P的大小并判断结果。若P>α,结论为按α所取水准不显著,不拒绝H0,即认为差别很可能是由于抽样误差造成的,在统计上不成立;如果P≤α,结论为按所取α水准显著,拒绝H0,接受H1,则认为此差别不大可能仅由抽样误差所致,很可能是实验因素不同造成的,故在统计上成立。P值的大小一般可通过查阅相应的界值表得到。
1. 建立假设,确定检验水准 α
将实际问题抽象为统计问题
选择假设检验的工具:根据数据类型选择不同的假设检验的工具;
2.定义原假设、备择假设
原假设:不证自明的假设,它是关于“没有差异”或者“根本没有效果”或“是相同的”陈述的假设,直到有充分的证据说明其是错误时为止总被认为是真实的;
备择假设:怀疑什么,什么就是备择假设,它是关于“有差异”或“有效果”,或“不同的”陈述的假设,在零假设被推翻时生效的另一个假设,根据具体事件有不同的假设。
原假设和备择假设是不对等的,不能互换;“拒绝总是有道理的”,我们可以说“拒绝原假设”,但不能说“接受原假设”,而只能说“没有充足的理由拒绝原假设”。