方差s^2=[(x1-x)^2+(x2-x)^2+......(xn-x)^2]/n
标准差=方差的算术平方根
标准差计算公式的来源
标准差是反应一组数据离散程度最常用的一种量化形式,是表示精密确的最要指标。
虽然样本的真实值是不能知道,但是每个样本总是会有一个真实值的,不管它究竟是多少。可以想象,一个好的检测方法,基检测值应该很紧密的分散在真实值周围。如不紧密,那距真实值的就会大,准确性当然也就不好了,不可能想象离散度大的方法,会测出准确的结果。因此,离散度是评价方法的好坏的最重要也是最基本的指标。
一组数据怎样去评价与量化它的离散度?有很多种方法:
1.极差
最直接也是最简单的方法,即最大值-最小值(也就是极差)来评价一组数据的离散度。这一方法最为常见,比如比赛中去掉最高最低分就是极差的具体应用。
2.离均差的平方和
由于误差的不可控性,因此只由两个数据来评判一组数据是不科学的。所以人们在要求更高的领域不使用极差来评判。其实,离散度就是数据偏离平均值的程度。因此将数据与均值之差(我们叫它离均差)加起来就能反映出一个准确的离散程度,越大离散度也就越大。
但是由于偶然误差是成正态分布的,离均差有正有负,对于大样本离均差的代数相加为零的。为了避免正负问题,在数学有上有两种方法:一种是取绝对值,也就是 常说的离均差绝对值相加。而为了避免符号问题,数学上最常用的是另一种方法--平方,这样就都成了非负数。因此,离均差的平方累加成了评价离散度一个指标。
3.方差(S2)
由于离均差的平方累加值与样本个数有关,只能反应相同样本的离散度,而实际工作中做比较很难做到相同的样本,因此为了消除样本个数的影响,增加可比性,将标准差求平均值,这就是我们所说的方差成了评价离散度的较好指标。
我们知道,样本量越大越能反映真实的情况,而算数均值却完全忽略了这个问题,对此统计学上早有考虑,在统计学中样本的均差多是除以自由度(n-1),它是意思是样本能自由选择的程度。当选到只剩一个时,它不可能再有自由了,所以自由度是n-1。
4.标准差(SD)
由于方差是数据的平方,与检测值本身相差太大,人们难以直观的衡量,所以常用方差开根号换算回来这就是我们要说的标准差。
一组数据中的每个数分别减去这组数据的平均数的差的平方相加起来除以这组数据的个数,就是该组数据的方差,方差再开平方即为标准差.如数据1、2、3、4、5平均数为3,则方差的计算公式为:[(1-3) ^ 2+(2-3) ^ 2+(3-3) ^ 2+(4-3) ^ 2+(5-3) ^ 2]÷ 5
s^2=[(x1^2+x2^2+x3^2+.xn^2)/n]-x(平均值)^2
s=根号{[(x1^2+x2^2+x3^2+.xn^2)/n]-x(平均值)^2}
望采纳!