方程两边求微分,d(x/z)=d(ln(z/y))=d(lnz-lny),(zdx-xdz)/z^2=dz/z-dy/y,y(zdx-xdz)=yzdz-z^2dy,dz=z/(x+z) dx + z^2/(xy+yz) dy。所以αz/αx=z/(x+z),αz/αy=z^2/(xy+yz)。