要求定积分 ∫[0, π/2] cos^3(x) * sin(x) dx,我们可以使用部分积分法来解决。
部分积分法的公式为:∫u dv = uv - ∫v du
首先,我们选择 u 和 dv:
u = cos^3(x) --> 导数为 du = -3cos^2(x)sin(x) dx
dv = sin(x) dx --> 不定积分为 v = -cos(x)
现在,我们可以应用部分积分法来计算定积分:
∫[0, π/2] cos^3(x)sin(x) dx = [-cos^3(x)cos(x)] [0, π/2] - ∫[0, π/2] (-cos(x))(-3cos^2(x)sin(x)) dx
现在计算第一部分的值:
[-cos^3(x)cos(x)] [0, π/2] = -cos^4(π/2) + cos^4(0)
= -1 + 1
= 0
现在计算第二部分的积分:
∫[0, π/2] (-cos(x))(-3cos^2(x)sin(x)) dx
= 3∫[0, π/2] cos^3(x)sin(x) dx
现在我们有:
∫[0, π/2] cos^3(x)sin(x) dx = 0 + 3∫[0, π/2] cos^3(x)sin(x) dx
将原式移到等式左侧:
-3∫[0, π/2] cos^3(x)sin(x) dx = 0
除以 -3:
∫[0, π/2] cos^3(x)sin(x) dx = 0
所以,定积分 ∫[0, π/2] cos^3(x)sin(x) dx 的结果是 0。
∫[0:π/2]cos³xsinxdx
=-∫[0:π/2]cos³xd(cosx)
=-¼cos⁴x|[0:π/2]
=-¼[cos⁴(π/2)-cos⁴0]
=-¼(0-1)
=¼