一、塑性形变
塑性变形是一种不可自行恢复的变形。工程材料及构件受载超过弹性变形范围之后将发生永久的变形,即卸除载荷后将出现不可恢复的变形,或称残余变形,这就是塑性变形。不是任何工程材料都具有塑性变形的能力。金属、塑料等都具有不同程度的塑性变形能力,故可称为塑性材料。玻璃、陶瓷、石墨等脆性材料则无塑性变形能力。工程构件设计吋一般不允许出现明显的塑性变形,否则构件将不能维持原先的形状甚至发生断裂。
二、弹性形变
在外力的作用下,物体发生形变,当外力撤消后,物体能恢复原状,则这样的形变叫做弹性形变。此时对与它接触的物体会产生力的作用,这种力叫做弹力。如弹簧的形变等。
在外力的作用下,物体发生形变,当外力撤去后,物体不能恢复原状,则称这样的形变叫做塑性形变,如橡皮泥的形变等。因物体
受力情况不同,在弹性限度内,弹性形变有四种基本类型:即拉伸和压缩形变;切变;弯曲形变和扭转形变。
扩展资料
塑性形变和弹性形变产生的机理:
1、塑性形变
固态金属是由大量晶粒组成的多晶体,晶粒内的原子按照体心立方、面心立方或紧密六方等方式排列成有规则的空间结构。由于多种原因,晶粒内的原子结构会存在各种缺陷。原子排列的线性参差称为位错。由于位错的存在,晶体在受力后原子容易沿位错线运动,降低晶体的变形抗力。通过位错运动的传递,原子的排列发生滑移和孪晶。
滑移使一部分晶粒沿原子排列最紧密的平面和方向滑动,很多原子平面的滑移形成滑移带,很多滑移带集合起来就成为可见的变形。孪晶是晶粒一部分相对于一定的晶面沿一定方向相对移动,这个晶面称为孪晶面。原子移动的距离和孪晶面的距离成正比。两个孪晶面之间的原子排列方向改变,形成孪晶带。滑移和孪晶是低温时晶粒内塑性变形的两种基本方式。
多晶体的晶粒边界是相邻晶粒原子结构的过渡区。晶粒越细,单位体积中的晶界面积越大,有利于晶间的移动和转动。某些金属在特定的细晶结构条件下,通过晶粒边界变形可以发生高达 300~3000%的延伸率而不破裂。
2、弹性形变
在常温和常压之下,同时在受到短时间的应力作用之下,大多数的岩石,都可以显示出弹性的性质,直到断裂(Rupture)为止。不过在岩石的弹性限度之内,当应力给移去之后,它们又将恢复原来的形状。岩石的弹性限度或屈服点,亦即相当于它们在断裂时所受到的应力。
假如有一作圆柱形的岩石体,若在平行于长轴的方向,受到拉力的作用,那么这一岩石体将会为之增长;反之若在平行于长轴的方向,受到压力的作用,则这一岩石体将会为之缩短。我们从应力和应变的比例当中,便可以量测出岩石在纵长方向抵抗变形的性质。把应力除以应变所得的结果,叫做杨氏模数(Young’s Modulus)或弹性模数(Modulus of Elasticity)。
参考资料:百度百科-塑性形变
百度百科-弹性形变
塑性变形:
塑性变形是一种不可自行恢复的变形。工程材料及构件受载超过弹性变形范围之后将发生永久的变形,即卸除载荷后将出现不可恢复的变形,或称残余变形,这就是塑性变形。
不是任何工程材料都具有塑性变形的能力。金属、塑料等都具有不同程度的塑性变形能力,故可称为塑性材料。玻璃、陶瓷、石墨等脆性材料则无塑性变形能力。工程构件设计吋一般不允许出现明显的塑性变形,否则构件将不能维持原先的形状甚至发生断裂。
2.弹性变形:
弹性形变是指固体受外力作用而使各点间相对位置的改变,当外力撤消后,固体又恢复原状谓之“弹性形变”。
拓展资料:
形变的种类有:
1.纵向形变:杆的两端受到压力或拉力时,长度发生改变;
2.体积形变:物体体积大小的改变;
3.切变:物体两相对的表面受到在表面内的(切向)力偶作用时,两表面发生相对位移,称为切变;
4.扭转:一圆柱状物体,两端各受方向相反的力矩作用而扭转,称扭转形变;
5.弯曲:两端固定的钢筋,因负荷而弯曲,称弯曲形变。
还包括弹性材料的应变,塑性材料的永久形变和液体的流动。无论产生什么形变,都可归结为长变与切变。
6.微小形变,指肉眼无法看到的形变,如果一个力没有改变物体的运动状态,以及没有发生以上形变,一定是使物体发生了微小形变。属于弹性形变。
7.剪切形变。
参考资料:百度百科—塑性变形
塑性形变
如果外力较大,当它的作用停止时,所引起的形变并不完全消失,而有剩余形变,称为塑性形变。
弹性形变
固体受外力作用而使各点间相对位置的改变,当外力撤消后,固体又恢复原状谓之“弹性形变”。
凡物体受到外力而发生形状变化谓之"形变"。物体由于外因或内在缺陷,物质微粒的相对位置发生改变,也可引起形态的变化。
形变的种类有:
1.纵向形变:杆的两端受到压力或拉力时,长度发生改变;
2.体积形变:物体体积大小的改变;
3.切变:物体两相对的表面受到在表面内的(切向)力偶作用时,两表面发生相对位移,称为切变;
4.扭转:一圆柱状物体,两端各受方向相反的力矩作用而扭转,称扭转形变;
5.弯曲:两端固定的钢筋,因负荷而弯曲,称弯曲形变。
还包括弹性材料的应变,塑性材料的永久形变和液体的流动。无论产生什么形变,都可归结为长变与切变。
6.微小形变,指肉眼无法看到的形变,如果一个力没有改变物体的运动状态,以及没有发生以上形变,一定是使物体发生了微小形变。属于弹性形变
7剪切形变
一、弹性形变:材料在外力作用下产生变形,当外力取消后,材料变形即可消失并能完全恢复原来形状的性质称为弹性。这种可恢复的变形称为弹性变形。 弹性变形的重要特征是其可逆性,即受力作用后产生变形,卸除载荷后,变形消失。如弹簧的形变等。
其公式如下:
E=ơ/ɛ (单位是dynes/cm2) (1)
式中 E为杨氏模数, ơ为应力, ɛ为应变。
二、塑性变形:是物质包括流体及固体在一定的条件下,在外力的作用下产生形变,当施加的外力撤除或消失后该物体不能恢复原状的一种物理现象。
材料由弹性形变变为塑性形变的应力,叫屈服强度。随着塑性变形的增大应力也持续增加,材料均匀变长,当应力达到一定程度(即抗拉强度),材料开始发生颈缩,力学上也叫开始失稳。变形不再均匀分布在整个工作长度上,集中在某一部份变细,并最终断裂。
弹性性别胡克定律
胡克定律的表达式为F=k·x或△F=k·Δx,其中k是常数,是物体的劲度(倔强)系数。在国际单位制中,F的单位是牛,x的单位是米,它是形变量(弹性形变),k的单位是牛/米。劲度系数在数值上等于弹簧伸长(或缩短)单位长度时的弹力。
弹性定律是胡克最重要的发现之一,也是力学最重要基本定律之一。在现代,仍然是物理学的重要基本理论。胡克的弹性定律指出:弹簧在发生弹性形变时,弹簧的弹力Ff和弹簧的伸长量(或压缩量)x成正比,即F= -k·x 。k是物质的弹性系数,它由材料的性质所决定,负号表示弹簧所产生的弹力与其伸长(或压缩)的方向相反。
参考资料: 百度百科--弹性形变
任何物体在外力作用下都会发生形变,当形变不超过某一限度时,撤走外力之后,形变能随之消失,这种形变称为弹性形变。如果外力较大,当它的作用停止时,所引起的形变并不完全消失,而有剩余形变,称为塑性形变。
所谓弹性形变是除去外力后能够恢复原状的形变。物体的形变过大,超过一定限度,这个时候即使除去外力,物体也不能完全恢复原状,这个限度叫做弹性限度,超过了这个限度,物体发生的形变叫做塑性形变。
拓展资料
凡物体受到外力而发生形状变化谓之“形变”。物体由于外因或内在缺陷,物质微粒的相对位置发生改变,也可引起形态的变化。
外力对材料的作用效果不外乎变形和断裂,变形又分为弹性变形和塑性变形,前者指应力较小时,外力去除后变形消失。后者指应力大到一定程度后,外力去除后形变也不能完全消失,而是还有一部份残余变形,即发生了塑性形变。
材料由弹性形变变为塑性形变的应力,叫屈服强度。随着塑性变形的增大应力也持续增加,材料均匀变长,当应力达到一定程度(即抗拉强度),材料开始发生颈缩,力学上也叫开始失稳。变形不再均匀分布在整个工作长度上,集中在某一部份变细,并最终断裂。
塑性变形行为强烈地依赖于温度和应变速率。在同一应变速率条件下,温度升高,屈服应力明显降低,上下屈服点越来越接近;而在同一温度下,应变速率降低,屈服应力显著降低,上下屈服点同样越来越接近。
参考资料百度百科。塑性形变