第一天: C对F, A对E, B对D
第二天: C对E, A对D, B对F
第三天: D对F, A对C, B对E
第四天: E对F, A对B, C对D
第五天: D对E, A对F, B对C
在这里,我介绍2种方法,(第二种方法会比较简单,强烈建议大家用第二种方法)
第一种方法
分析:因为,这是单循环比赛,所以每两个相同人只能比赛一场(例如第一天出现B对D,那么以后这几天的比赛,不可能再次出现B对D)
按每天来分析:
第一天:已知 B对D ,那么剩下的 A,C,E,F两两对决就可能有下面的六种情况:
1,A—C,4,C—E(第二天对决,又是单循环赛,所以C—E排除。第一天不会出现)
2,A—E, 5,C—F
3,A—F, 6,E—F
那么只剩下(剩下的两场比赛只能在以下几种情况中):
1,A—C,
2,A—E, 4,C—F
3,A—F, 5,E—F
第二天:已知 C对E ,那么剩下的 A, B, D, F两两对决就可能有下面的六种情况:
1,A—B,4,B—D(第一天对决,又是单循环赛,所以B—D排除。第二天不会出现)
2,A—D, 5,B—F
3,A—F, 6,D—F(第三天对决,又是单循环赛,所以D—F排除。第二天不会出现)
那么只剩下:
1,A—B,
2,A—D, 4,B—F
3,A—F,
同时,A、B、C、D、E、F六个选手进行乒乓球单打的单循环比赛,每天同时在三张球台上进行1场比赛。(人不可能有分身术,同时进行两场比赛。)
因此,必定不可能出现某个人在一天之内比赛两场,
据此,可以得出A、B、C、D、E、F每个人在一天之内都要进行一场比赛,不可缺席。(那么第二天剩下的两场比赛就只能在以下几种情况中)
1,A—B,
2,A—D, 4,F—B
3,A—F,
那么,当天剩下啊的两场比赛又会出以下几种情况:
1,A—B,A—D(排除,A同时出现两次,F坐冷板凳)
2,A—B,A—F(排除,A同时出现两次,D坐冷板凳)
3,A—B,F—B(排除,B同时出现两次,D坐冷板凳)
4,A—D,A—F(排除,A同时出现两次,B坐冷板凳)
5,A—D,F—B(符合题意)
6,A—F, F—B(排除,F同时出现两次,D坐冷板凳)
整理可以得出:
第二天的比赛,绝对是这三场,
(C对E,A对D,F对B)
第三天:已知 D对F ,那么剩下的 A, B, C, E两两对决就可能有下面的六种情况:
1,A—B,4,B—C(第五天对决,又是单循环赛,所以B—C排除。第三天不会出现)
2,A—C, 5,B—E
3,A—E, 6,C—E(刚才的推理这场是第二天的比赛,排除)
据此,可以得出A、B、C、D、E、F每个人在一天之内都要进行一场比赛,不可缺席。(那么第三天剩下的两场比赛就只能在以下几种情况中)
1,A—B,
2,A—C, 4,B—E
3,A—E,
那么,当天剩下啊的两场比赛又会出以下几种情况:
1,A—B,A—C(排除,A同时出现两次,E坐冷板凳)
2,A—B,A—E(排除,A同时出现两次,C坐冷板凳)
3,A—B,B—E(排除,B同时出现两次,C坐冷板凳)
4,A—C,A—E(排除,A同时出现两次,B坐冷板凳)
5,A—C,B—E(符合题意)
6,A—E, B—E(排除,E同时出现两次,C坐冷板凳)
整理可以得出:
第三天的比赛,绝对是这三场,
(D对F,A对C,B对E)
第五天:已知 B对C ,那么剩下的 A,D,E,F两两对决就可能有下面的六种情况:
1,A—D(刚才的推理这场是第二天的比赛,排除),4,D—E
2,A—E, 5,D—F(刚才的推理这场是第三天的比赛,排除)
3,A—F, 6,E—F
据此,可以得出A、B、C、D、E、F每个人在一天之内都要进行一场比赛,不可缺席。(那么第五天剩下的两场比赛就只能在以下几种情况中)
1,A—E,
2,A—F, 4,E—F
3,D—E,
那么,当天剩下啊的两场比赛又会出以下几种情况:
1,A—E,A—F(排除,A同时出现两次,D坐冷板凳)
2,A—E,D—E(排除,E同时出现两次,F坐冷板凳)
3,A—E,E—F(排除,E同时出现两次,D坐冷板凳)
4,A—F,D—E(符合题意)
5,A—F,E—F(排除,F同时出现两次,D坐冷板凳)
6,D—E, E—F(排除,E同时出现两次,A坐冷板凳)
所以 第五天的比赛,绝对是这三场:
(B对C,A对F,D对E)
答案出来了是A对F
我们试着做下去,把所有的比赛求出来:
现在目标是:反证第一天,
刚才整理出:第一天剩下5种情况:
1,A—C(刚才的推理这场是第三天的比赛,排除)
2,A—E, 4,C—F
3,A—F(刚才推导出这场是第五天的比赛,排除) 5,E—F
那么只剩下3种情况:
1,A—E,2,C—F
3,E—F
那么,当天剩下啊的两场比赛又会出以下几种情况:
1,A—E,C—F(符合题意)
2,A—E,E—F(排除,E同时出现两次,F坐冷板凳)
3,E—F,C—F(排除,F同时出现两次,A坐冷板凳)
可以推导出第一天的比赛时这三场:
(B对D,A对E,C对F)
剩下可以求第四天了
整理得到,比赛是这样子的
第一天: C对F, A对E, B对D
第二天: C对E, A对D, B对F
第三天: D对F, A对C, B对E
第四天: E对F, A对B, C对D
第五天: D对E, A对F, B对C
第二种方法
1,我们从第三天的C和谁比赛入手,(我们拿出一张纸,在纸上写上A,B,D,E,F)
我们已经知道:第三天是D和F在比赛。(又因为这是单循环比赛,而且每天同时进行三场比赛)
那么C就不可能在第三天遇到D和F,请在纸上将D,F画上叉
再看看其他日子C曾和谁比赛过:
已知:第二天C对E,第五天B对C
那么第三天C就不可能在遇到E和B,请在纸上将B和E画上叉。
现在纸上是不是剩下A。
对了,这就是第三天C比赛的对手。很容亦可以得出,B—E
整理可以得到:
第三天的比赛是:A—C,D—F, B—E
2,接下来我们再从第二天D和谁比赛入手:(以同样的方法,在纸上画上A,B,C,E,F )
已知第二天的比赛是:C对E(在C和E上画叉)
再看其他时间,D的比赛
第一天B对D,第三天D对F
那么第三天D就不可能在遇到F和B,请在纸上将B和F画上叉
再看看纸上是不是还剩A,没错这就是第二天D的比赛对手。
再整理可得到:
第二天的比赛:A—D,C—E,B—F.
第三天的比赛:A—C,D—F,B—E.
3,现在,可以用同样的方法推出
第一天的比赛:
C不可能与B和D相遇,B,D上画叉,也不可能与E相遇,在E上画叉,
根据我们推导出来的:
第三天的比赛:A—C,D—F,B—E,所以C也不可能与A相遇.在A上画叉。
这是纸上只剩下F了。这就是第一天C的对手。
整理可得出:
第一天的比赛:A—E,B—D,C—F.
第二天的比赛:A—D,B—F,C—E.
第三天的比赛:A—C,B—E,D—F.
4,已知:第五天B—C,
以同样的方法不难得出:D不可能和B,C,F相遇,画上叉。
根据上面的出的3天的比赛赛程,可以推导出D不可能和A相遇,画上叉。
所以第五天D只能对E,不难推出第五天A对F
整理可得出:
第一天的比赛:A—E,B—D,C—F.
第二天的比赛:A—D,B—F,C—E.
第三天的比赛:A—C,B—E,D—F.
第五天的比赛:A—F,B—C,D—E.
那么现在可以推出第四天的赛程了:整理得到
第一天的比赛:A—E,B—D,C—F.
第二天的比赛:A—D,B—F,C—E.
第三天的比赛:A—C,B—E,D—F.
第四天的比赛:A—B,C—D,E—F.
第五天的比赛:A—F,B—C,D—E.
得出答案!
答案是A对F
具体的思路就是
B-D B-A/F B-A/E B-A/E/F B-C
D-B D-A/F D-F D-A/C/E D-A/C/E
分析整理下就可以得到
B-D B-F B-A/E B-A/E B-C
D-B D-A D-F D-C D-F
最后一天就剩A,F
A对F D对E