解:
∫cos⁴xdx
=∫(cos²x)²dx
=∫[(1+cos2x)/2]²dx
=(1/4)∫(1+cos²2x+2cos2x)dx
=(1/4)∫[1+(1+cos4x)/2+2cos2x]dx
=(1/4)[x+x/2+(sin4x)/8+sin2x]+C