若函数f(x)=√3*sin2x+2cos²x+m在区间[0,π⼀2]上的最大值为6,求常数m的值及此函数当x∈R时的最小值

求高手解答~!
2024-12-29 01:47:23
推荐回答(1个)
回答1:

解:
f(x) = √3sin2x + 1 + cos2x + m
= 2sin(2x+π/6) + 1 + m
x∈[0,π/2]时,2x+π/6∈[π/6,7π/6],sin(2x+π/6)∈[-1/2,1]
∴ f(x)∈[m,3+m]
∴ 3+m = 6 , m = 3
f(x)min = -2 + 1 + 3 = 2