原式=1+1/(1+2)+1/(1+2+3)+...+1/(1+2+...2000)-1=2*(1-1/2+1/2-1/3+...+1/2000-1/2001)-1=2*2000/2001-1=1999/2001 解题技巧在:当原式加1恰好第n项通项为2/n*(n+1),裂项后为2*{1/n-1/(n+1)},消项后只剩2项
裂项法
上面的很详细了
1/(1+2 )+1/(1+2+3) +……+1/(1+2+3+……20000)
=2*(1/2*3+1/3*4+1/4*5+……+1/2000*2001)
=2*(1/2-1/3+1/3-1/4+1/4-1/5+……+1/2000-1/2001)
=2*(1/2-1/2001)
=1999/2001