(1)f(x)=ax2+1(a>0),则f'(x)=2ax,k1=2a,g(x)=x3+bx,则g′(x)=3x2+b,k2=3+b,
由(1,c)为公共切点,可得:2a=3+b ①
又f(1)=a+1,g(1)=1+b,
∴a+1=1+b,即a=b,代入①式可得:
.
a=3 b=3
(2)由题设a2=4b,设h(x)=f(x)+g(x)=x3+ax2+
a2x+11 4
则h′(x)=3x2+2ax+
a2,令h'(x)=0,解得:x1=?1 4
,x2=?a 2
;a 6
∵a>0,∴?
<?a 2
,a 6
x | (-∞,-
| -
| (?
| ?
|
(?
|
||||||||||||
h′(x) | + | - | + | ||||||||||||||
h(x) | 极大值 | 极小值 |
a |
2 |
a |
2 |
a |
6 |
a |
6 |
a |
2 |
a2 |
4 |
a |
2 |
a |
2 |
a2 |
4 |
a |
2 |