已知四边形的一对对角互补怎么证明四点共圆,方法越详细越多越好

2024-12-15 12:02:40
推荐回答(1个)
回答1:

已知:四边形ABCD中,∠A+∠C=180°
求证:四边形ABCD内接于一个圆(A,B,C,D四点共圆)
证明:用反证法
过A,B,D作圆O,假设C不在圆O上,刚C在圆外或圆内,
若C在圆外,设BC交圆O于C’,连结DC’,根据圆内接四边形的性质得∠A+∠DC’B=180°,
∵∠A+∠C=180°∴∠DC’B=∠C
这与三角形外角定理矛盾,故C不可能在圆外。类似地可证C不可能在圆内。
∴C在圆O上,也即A,B,C,D四点共圆。