f′(x)=
=ax2?x?a+1 x2
.(x?1)(ax+a?1) x2
当a=0时f′(x)=
,∴f(x)在(0,1]上单调递增,在(1,+∞)上单调递减;1?x x2
当a≠0时,f′(x)=
a(x?1)(x?
)1?a a x2
当a<0 时,
<0,∴f(x)在(0,1]上单调递减,在(1,+∞)上单调递增;1?a a
当0<a<
时,1 2
>1,∴f(x)在(0,1)上单调递增,在(1,1?a a
)上单调递减,在[1?a a
,+∞)上单调递增;a?1 a
当a=
时,1 2
=1,∴f(x)在(0,+∞)单调递增;1?a a
当
<a<1 时,0<1 2
<1,∴f(x) 在(0,1?a a
)上单调递增,在(1?a a
,1)上单调递减,在(1,+∞)上单调递增;1?a a
当a≥1时,
<0,∴f(x)在(0,1)单调递减,在[1,+∞)上单调递增;1?a a