将抛物线在x=x0处的切线方程写出来,然后利用点到直线距离公式表示切线到点的距离,求最值。
例如求点(a,b)到抛物线y=x^2的最短距离:
设切线y=kx+b,因为y`=2x,于是k=2x0,将(x0,x0^2)带入得2(x0)^2=2(x0)^2+b得b=-(x0)^2,于是y=x^2在x=x0处切线方程为y=2x0x-(x0)^2,即2x0x-y-(x0)^2=0,则点(a,b)到y的距离为:d=|2ax0-b-(x0)^2|/[4(x0)^2+1]^(1/2),接着等式两边同时平方,再对右边进行求导来求最值。
原点在抛物线上,离心率e均为1 ;对称轴为坐标轴;准线与对称轴垂直,垂足与焦点分别对称于原点,它们与原点的距离都等于一次项系数的绝对值的1/4。
扩展资料:
对称轴为x轴时,方程右端为±2px,方程的左端为y^2;对称轴为y轴时,方程的右端为±2py,方程的左端为x^2。
开口方向与x轴(或y轴)的正半轴相同时,焦点在x轴(y轴)的正半轴上,方程的右端取正号;开口方向与x(或y轴)的负半轴相同时,焦点在x轴(或y轴)的负半轴上,方程的右端取负号。
知道抛物线的与x轴的两个交点(x1,0),(x2,0),并知道抛物线过某一个点(m,n),设抛物线的方程为y=a(x-x1)(x-x2),然后将点(m,n)代入去求得二次项系数a。
参考资料来源:百度百科--抛物线
将抛物线在x=x0处的切线方程写出来,然后利用点到直线距离公式表示切线到点的距离,求最值。
例如求点(a,b)到抛物线y=x^2的最短距离:
设切线y=kx+b,因为y`=2x,于是k=2x0,将(x0,x0^2)带入得2(x0)^2=2(x0)^2+b得b=-(x0)^2,于是y=x^2在x=x0处切线方程为y=2x0x-(x0)^2,即2x0x-y-(x0)^2=0,则点(a,b)到y的距离为:d=|2ax0-b-(x0)^2|/[4(x0)^2+1]^(1/2),接着等式两边同时平方,再对右边进行求导来求最值。但是这样需要解高次方程,非常麻烦。。建议使用软件。。