答案是:a=2f(x)=|ax+1|,a∈R且f(x)<=3,可得|ax+1|<=3;所以-3<=ax+1<=3,所以-4/a≤x≤2/a;可得a=2
因为 x>1,所以 x-1、1/(x-1) 均为正数;f(x)=x+1/(x-1)=(x-1)+1/(x-1)+1,由于 (x-1)+1/(x-1)大于等于 2倍根号[(x-1)*1/(x-1)]=2所以 f(x)=(x-1)+1/(x-1)+1 大于等于 2+1=3,于是知 f(x)的最小值为3.
2