几何意义的话,因为y=sqrt(1-x^2),0=
第二个是y=x与x轴,以及x=1在第一象限构成的图形面积=1/2
所以第一个>第二个
解:根据题意:设√(1-x^2)=y,则有x^2+y^2=1, 再由0≤x≤1,可得0≤y≤1,所以,x,y是单位圆位于第一象限的部分,因此该积分是第一象限的单位圆面积,S1=π/4。
而∫(1.0)xdx表示的是直线y=x和直线y=0在0≤x≤1,0≤y≤1的区域围成的面积
即边长为1的等腰直角三角形的面积,S2=1/2<π/4
所以∫(上1,下0)sqrt(1-x^2)dx>∫(上1下0)xdx,得证
满意请采纳,谢谢~
解:根据题意:设√(1-x^2)=y,则有x^2+y^2=1,
再由0≤x≤1,可得0≤y≤1,所以,x,y是单位圆位于第一象限的部分,因此该积分是第一象限的单位圆面积,S1=π/4