先化简再求值1.(2⼀a^2-4)(a^2+4⼀4a-1)÷(1⼀2-1⼀a) ...

2024-12-13 00:33:59
推荐回答(1个)
回答1:

(2/a^2-4)(a^2+4/4a-1)÷(1/2-1/a)
其中a=1/2
=[2/(a+2)(a-2)][(a^2-4a+4)/4a]÷[(a-2)/2a]
=[2/(a+2)(a-2)][(a-2)^2/4a]÷[(a-2)/2a]
=2(a-2)^2*2a/4a(a+2)(a-2)(a-2)
=1/(a+2)
=1/(1/2+2)
=2/5
{(x-y)^2+(x+y)(x-y)}÷2x
=(x^2-2xy+y^2+x^2-y^2)÷2x
=(2x^2-2xy)÷2x
=x-y
=3-1.5
=1.5
(a-1)^2+|b-2|=0
平方,绝对值大于等于0
相加得0.所以都等于0
a-1=0.b-2=0
a=1,b=2
所以[(a+b/2)^2+(a-b/2)^2](2a^2-b^2/2)
=(2a^2+b^2/2)(2a^2+b^2/2)
=4a^4-b^4/4
=4-16/4
=0
(a^2b-2ab-b^2)÷b-(a+b)(a-b)
其中a=1/2
b=1
=(a^2-2a-b)-(a^2-b^2)
=b^2-b-2a
=1-1-1
=-1