对于已知数据为绝对数,我们一般根据下列步骤来计算所需要的样本量。已知期望调查结果的精度(E), 期望调查结果的置信度(L),以及总体的标准差估计值σ的具体数据,总体单位数N。
计算公式为:n=σ2/(e2/Z2+σ2/N)
特殊情况下,如果是很大总体,计算公式变为:n= Z2σ2/e2
例如希望平均收入的误差在正负人民币30元之间,调查结果在95%的置信范围以内,其95%的置信度要求Z的统计量为1.96。根据估计总体的标准差为150元,总体单位数为1000。
样本量:n=150*150/(30*30/(1.96*1.96))+150*150/1000)=88
对于已知数据为百分比,一般根据下列步骤计算样本量。已知调查结果的精度值百分比(E),以及置信度(L),比例估计(P)的精度,即样本变异程度,总体数为N。
扩展资料:
样本容量的大小涉及到调研中所要包括的单元数。样本容量是对于你研究的总体而言的,是在抽样调查中总体的一些抽样。比如:中国人的身高值为一个总体,随机取一百个人的身高,这一百个人的身高数据就是总体的一个样本。某一个样本中的个体的数量就是样本容量。注意:不能说样本的数量就是样本容量,因为总体中的若干个个体只组成一个样本。样本容量不需要带单位。
在假设检验里样本容量越大越好。但实际上不可能无穷大,就像研究中国人的身高不可能把所有中国人的身高全部测量一次一样。
参考资料来源:百度百科-样本容量