如何求椭圆过右焦点弦与椭圆交点的极坐标

如何求椭圆过右焦点弦与椭圆交点的极坐标以右焦点为极点
2024-11-27 21:11:32
推荐回答(2个)
回答1:

椭圆弦长公式是利用圆锥曲线定义及有关定理导出各种曲线的焦点弦长的公式。关于直线与圆锥曲线相交求弦长,通用方法是将直线y=kx+b代入曲线方程,化为关于x(或关于y)的一元二次方程,设出交点坐标,利用韦达定理及弦长公式√(1+K²)[(x1+X2)² - 4x1x2]求出弦长,这种整体代换,设而不求的思想方法对于求直线与曲线相交弦长是十分有效的。关于直线与圆锥曲线相交求弦长,通用方法是将直线y=kx+b代入曲线方程,化为关于x(或关于y)的一元二次方程,设出交点坐标,利用韦达定理及弦长公式√(1+K²)[(x1+X2)² - 4x1x2]求出弦长,这种整体代换,设而不求的思想方法对于求直线与曲线相交弦长是十分有效的,然而对于过焦点的圆锥曲线弦长求解利用这种方法相比较而言有点繁琐,利用圆锥曲线定义及有关定理导出各种曲线的焦点弦长公式就更为简捷。

回答2:

过左焦点为2a+e(x1+x2)(x1 x2为弦端点的横坐标)过右焦点为2a-e(x1+x2)推导公式用圆锥曲线统一定义。到焦点的距离比上到准线的距离=e