解答:(1)证明:∵f(x+y)=f(x)+f(y),
令x=y=0,得f(0)=f(0)+f(0),即f(0)=0.
令x+y=0,即y=-x,得f(0)=f(x)+f(-x),
∴f(-x)=-f(x)
∴f(x)是奇函数
(2)解:设x1、x2∈R,且x1<x2,则x1-x2<0,由已知得f(x1-x2)<0.
∴f(x1)-f(x2)=f(x1)+f(-x2)=f(x1-x2)<0
∴f(x1)<f(x2)即f(x)在R上是增函数.
又2f(m)=f(m)+f(m)=f(2m).
同理2f(x)=f(2x)
f(mx2)-2f(x)>f(m2x)-2f(m)
?f(mx2)+f(2m)>f(m2x)+f(2x)
?f(mx2+2m)>f(m2x+2x)
?mx2+2m>m2x+2x
?mx2-(m2+2)x+2m>0
∵m>0,∴x2?(m+
)x+2>02 m
∴(x?
)(x?m)>02 m
当
<m,即m>2 m
时,不等式的解集为{x|x<
2
或x>m};2 m
当
>m,即0<m<2 m
时,不等式的解集为{x|x<m或x>
2
}.2 m