A1+A2+……+A(n-1)+An=n^2×An
A1+A2+……+A(n-1)=(n-1)^2×A(n-1)
两式相减
An=n^2×An-(n-1)^2×A(n-1)
(n^2-1)×An=(n-1)^2×A(n-1)
An/A(n-1)=(n-1)^2/(n^2-1)=(n-1)^2/[(n+1)(n-1)]=(n-1)/(n+1)
A(n-1)/A(n-2)=(n-2)/n
A(n-2)/A(n-3)=(n-3)/(n-1)
……
A4/A3=3/5
A3/A2=2/4
A2/A1=1/3
上式相乘,相同项消去
An/A1=1×2/[n(n+1)]
An=2A1/[n(n+1)]=1/[n(n+1)]=1/n-1/(n+1)
1/2,a1+a2+……+an=n^2an
1/2,a1+a2+……+an-1=n^2an-1
两式相减