由已知得,xy=[(x+y)^2-(x^2+y^2)]/2=-1
(1)x^3+y^3=(x^2+y^2)(x+y)-xy^2-x^2y=(x^2+y^2)(x+y)-xy(X+y)=3*1+1=4
(2)x^4+y^4=(x^3+y^3)(x+y)-xy(x^2+y^2)=7
而x^2y^2=[(x^2+y^2)^2-(x^4+y^4)]/2=1
x^5+y^5=(x^3+y^3)*(x^2+y^2)-x^2y^2(X+y)=11
(1)
x^3+y^3=(x+y)(x^2-xy+y^2)
=x^2-xy+y^2
=3-xy
x^2+y^2=3
(x+y)^2-2xy=3
1-2xy=3
xy=-1
所以,原式=3-(-1)=4
(2)原式=(x^2+y^2)(x^3+y^3)-x^2*y^2(x+y)
=3*4-(-1)^2
=11
用已知式子求出XY=-1后把两个已知的式子相乘,化简第一问是4。第二问把已知第一个式子乘两次已知第二式子化简得11