(1)∵抛物线y=ax2+2x经过点A(4,0),
∴0=16a+8.
∴a=-
,
∴抛物线的表达式为y=-
x
2+2x,
∴y=-
x
2+2x=-
(x
2-4x+2
2-4)=-
(x-2)
2+2.
顶点B的坐标为(2,2);
(2)解法一:设平移后抛物线的表达式为y=-
x
2+bx+c.
∵点B的坐标为(2,2),
∴AB=OB=2
,∠BAD=∠BOC=45°.
又∵∠DBA=∠CBO,
∴△ABD≌△OBC.
∴AD=OC,即平移的距离为c.
∴点D的坐标为(4-c,0).
∴0=-
(4-c)
2+b(4-c)+c.
又∵平移后抛物线的对称轴为x=b.
∴b=2-c.
∴0=-
(4-c)
2+(2-c)(4-c)+c..
解得c=2或c=0(不符合题意,舍去).
∴平移后抛物线的表达式为y=-
x
2+2.
解法二:∵原抛物线表达式为y=-
x(x-4),
∴设平移后抛物线表达式为y=-
(x+m)(x-4+m)(m>0,向左平移的距离).
即y=-
x
2-(m-2)x-
m
2+2m.
∵B的坐标为(2,2),
∵AB=OB=2
,∠BAD=∠BOC=45°,
又∵∠DBA=∠CBO,
∴△ABD≌△OBC.
∴AD=OC,即m=-
m
2+2m.解得m=2或m=0(不符合题意,舍去).
∴平移后抛物线的表达式为:y=-
x
2+2.