高数题,求微分方程的通解及给定条件的特解

2024-11-23 21:12:43
推荐回答(2个)
回答1:

求微分方程 y'=ytanx+cosx的通解
解:先求齐次方程y'=ytanx的通解:
分离变量得:dy/y=(tanx)dx;积分之得:
lny=∫tanxdx=∫(sinx/cosx)dx=-∫d(cosx)/cosx=-lncosx+lnc₁=ln(c₁/cosx);
故齐次方程的通解为:y=c₁/cosx;将c₁换成x的函数u,得y=u/cosx.............①
对①取导数得:y'=(u'cosx+usinx)/cos²x=(u'/cosx)+(utanx)/cosx...............②
将①②代入原式得:(u'/cosx)+(utanx)/cosx=(utanx/cosx)+cosx
化简得u'/cosx=cosx;故u'=cos²x;即du=cos²xdx;
积分之得u=∫cos²xdx=(1/2)∫(1+cos2x)dx=(1/2)[x+(1/2)sin2x]+c=(1/2)x+(1/2)sinxcosx+c
代入①式即得原方程的通解为:
y=[(1/2)x+(1/2)sinxcosx+c]/cosx=(1/2)xsecx+(1/2)sinx+csecx

回答2:

y′cosx-ysinx=cos²x
ycosx=∫(cos2x+1)/2dx=sin2x/4+x/2+C
y=sinx/2+xsecx/2+Csecx