因为机体对空气的压缩无法迅速传播,逐渐在飞机的迎风面和它附近区域积累,最终形成空气中激波面,激波面将显著增加飞机的阻力,从而形成音障。战斗机在低空飞行的时候产生的音爆不仅影响到地面人和动物的正常工作休息,还有可能导致地面房屋玻璃被震碎,甚至还会让一些不稳定的建筑倒塌,造成比较严重的后果。
气动力中心后移,飞行阻尼减小,这要求航空器的机翼后掠,面积减小,机体做成尖顶的细长形,加大控制面(特别是垂尾)面积。由于操纵性能变坏,抗干扰及恢复能力变差,因而在超音速飞行时要求驾驶员动作要协调、柔和。
超音速飞行会造成音爆,产生强力噪声,一般禁止在居民区上空进行超音速飞行。人类在喷气发动机出现后于1947年终于实现了以超音速飞行的梦想,其间经过了40多年。
当飞行速度很大(马赫数超过2.5)时,由于气体分子的摩擦,造成气动加热,使机体表面温度升高,现在通用的铝合金材料不能承受,马赫数超过2.5的航空器要使用钛合金或其他耐热合金结构材料。
扩展资料
超音速飞机采用的是超音速燃烧冲压发动机,它类属于冲压发动机。冲压发动机的原理由法国人雷恩?洛兰于1913年提出,1939年首次被德国用于V-1飞弹上。冲压发动机由进气道、燃烧室、推进喷管三部分组成,它比涡轮喷气发动机简单得多。冲压是利用迎面气流进入发动机后减速、提高静压的过程。该过程不需要高速旋转的、复杂的压气机。
高速气流经扩张减速,气压和温度升高后,进入燃烧室与燃油混合燃烧,温度为2000—2200℃,甚至更高,经膨胀加速,由喷口高速排出,产生推力。
冲压喷气发动机目前分为亚音速、超音速、超音速燃烧(或高超音速)三类。亚音速冲压发动机以航空煤油为燃料,采用扩散形进气道和收敛形喷管,飞行时增压比不超过1.89。速度在小于0.5马赫时一般无法工作。超音速冲压发动机采用超音速进气道,燃烧室入口为亚音速气流,采用收敛形或收敛扩散形喷管。用航空煤油或烃类作为燃料。
推进速度为2至5马赫,可用于超音速靶机和地对空导弹。超音速燃烧(高超音速)发动机是一种使用碳氢燃料或液氢燃料新颖的发动机,空气在发动机内的流速始终保持为超音速,飞行速度高达5至16马赫。
超音速燃烧发动机同涡扇喷气发动机存在不同。其实,它也有别于火箭发动机。虽然,多级火箭的速度极高,可达20多马赫,但是它携带着全部的燃料,因而在相同体积的情况下,其有效负载低于安装有超音速燃烧冲压发动机的飞行器。
音爆
当我们路过超音速飞机的机场附近时,有可能会听到“嘣嘣”两声巨响,犹如晴天霹雳,震耳欲聋。如果是你初次听到的话还会大吃一惊!以为是飞机在空中放炮,或者出了什么问题。其实不然,这就是超音速飞行中的所谓“音爆”(也称为“爆音”)。
那么,“音爆”究竟是怎么回事,为什么只有在超音速飞行时才会出现呢?要想了解这一点,我们可以从一种常见的自然现象谈起:
在平静的水面上,如果投一块石头,水面上立刻会出现一圈一圈的水波向四周传播,波及整个水面,也就是我们常常说的“一石激起千层浪”。但如果是在水面上运动的物体在水中激起的水波就不是这样了,例如一艘快艇在水中高速前进时,我们看到它激起的水波就不是一圈一圈地向外传,而是从艇前开始,呈一楔形向外传播。同时我们可以看到前缘密集,波浪很大,而后面波浪就很小。这种波我们称为楔形水波。此波随同快船一道前进,波及的范围始终在楔形之内。
同样地,对于空气来说,也有这种现象,如果给空气一个扰动,声音也会象水一样通过波的形式向外传播,这就是声波。我们平时听见的声音就是声波传入耳内刺激鼓膜产生的。当飞机在空中作超音速飞行时,在机头或突出部分,也会象水中前进的快艇一样出现一种楔形或锥形波,这就是激波。当它们向外传播时便互相干扰和影响,然后汇集成一道包罗机头的前激波和一道尾随机尾的后激波。这种波虽然可以用上述的楔形水波来比拟,但有着迥然不同的性质。激波的厚度很小,经过波后空气的压强、密度、温度都突然升高,速度立即下降。当这两道激波波及到无论哪个空间和物体时,均会感到这种强烈的变化,反映到人的耳朵里,使耳鼓膜受到突然的空气压强变化,就感觉是两声雷鸣般的巨响。这种响声就称之为“音爆”。
“音爆”只有在飞机作超音速飞行时才会出现。当飞机在一定高度下以超音速飞行时,由于激波引起的强烈的压力变化。使我们听到了“音爆”。那么,随同飞机一道前进的飞行员是不是也会有同样的感觉呢?其实飞行员是不会听到这种响声的,因为飞行员坐在座舱里,激波引起的压强、密度、温度的变化,飞行员是无法感觉到的。即使座舱不密封。由于飞行员始终处于前激波的后面、后激波的前面,也就是说,他是处在一个暂时的稳定的等压强的条件下,也是听不到的。
“音爆”的强弱以及即对地面影响的大小,与飞机飞行高度有着直接的关系。因为,激波和水被一样,距离越远,波的强度也越弱。当飞机作低空超音速飞行时,不但地面的人畜能听到震耳欲聋的巨响,影响人们的生活和工作,严重的还可以震碎玻璃,甚至损坏不坚固的建筑物,造成直接的损失。随着飞行高度的增加,这种影响越来越弱,当超过一定的高度后,地面基本不会受到影响