有限的元素集合,每个元素都有一个优先权
操作
Create ( ):创建一个空的优先队列
Size ( ):返回队列中的元素数目
Max ( ):返回具有最大优先权的元素
I n s e rt (x):将x插入队列
DeleteMax (x):从队列中删除具有最大优先权的元素,并将该元素返回至x
}
优先队列插入元素的复杂度都是O(lgn),删除元素的复杂度是O(1),所以很快。
另一种描述方法是采用有序线性表,当元素按递增次序排列,使用链表时则按递减次序排列,这两种描述方法的删除时间均为( 1 ),插入操作所需时间为(n).
例:
假设我们对机器服务进行收费.每个用户每次使用机器所付费用都是相同的,但每个
用户所需要服务时间都不同.为获得最大利润,假设只要有用户机器就不会空闲,我们可以把
等待使用该机器的用户组织成一个最小优先队列,优先权即为用户所需服务时间.当一个新的
用户需要使用机器时,将他/她的请求加入优先队列.一旦机器可用,则为需要最少服务时间
(即具有最高优先权)的用户提供服务.
如果每个用户所需时间相同,但用户愿意支付的费用不同,则可以用支付费用作为优先权,
一旦机器可用,所交费用最多的用户可最先得到服务,这时就要选择最大优先队列.
下面是数组实现的二叉堆,其中MAX_SIZE是数组的最大长度;ElementType是其中元素的类型;Priority(x: ElementType) 是一个函数,返回值是元素x的优先级,当然也可以用一个Priority数组来保存每个元素的优先级(在这个打字员问题中就应该用一个数组来保存每个元素的优先级,在这个问题中优先级就是从初始密码转换到该密码所需的操作的数目)。
type
PriorityQueue = record
contents: array [1..MAX_SIZE]of ElementType;
last : integer;
end;
{ 将一个优先队列变空 }
procedure MakeNull(var A: PriorityQueue);
begin
A.last := 0;
end;
{ 向优先队列A中插入一个元素x }
procedure Insert(x: ElementType; var A: PriorityQueue);
var
i: integer;
temp:ElementType;
begin
if A.last = MAX_SIZE then
Error('Priority Queue is full.')
else begin
A.last := A.last + 1;
A.contents[A.last] := x;
i := A.last;
while (i > 1) and ( Priority(A.contents) < Priority(A.contents[i div 2]) do
begin
temp := A.contents;
A.contents:= A.contents[i div 2];
A.contents[i div 2] := temp;
i := i div 2;
end; { end of while }
end; { end of else }
end; { end of Insert }
{ 删除优先队列对头的那个优先级最小的元素,并将其值返回 }
function DeleteMin(var A: PriorityQueue): ElementType;
var
minimun : ElementType;
i : integer;
begin
if A.last = 0 then
Error('Priority Queue is empty. ')
else begin
minimun := A.contents[1];
A.contents[1] := A.contents[A.last];
A.last := A.last - 1;
i := 1;
while i < (A.last div 2) do
begin
if (Priority(A.contents[2*i]) < Priority(A.contents[2*i+1])) or (2*i = A.last)
then j := 2*i;
else j := 2*i + 1;
{ j节点是i节点具有较高优先级的儿子,当i节点只有一个儿子的时候,j节点是i节点的唯一儿子 }
if Priority(A.contents) > Priority(A.contents[j]) then
begin
temp := A.contents;
A.contents:= A.contents[j];
A.contents[j] := temp;
i := j;
end
else begin { 不能再向下推了 }
DeleteMin := minimum;
exit;
end;
end; { end of while }
{ 这时已经到达叶结点 }
DeleteMin := minimum;
exit;
end; { end of else }
end; { end of DeleteMin }
//二叉堆就是优先队列,hehe(父节点大于子节点)
使用无序数组实现优先级队列(c++)
#include
#include