7. y=e^(∫tanxdx)[∫xe^(-∫tanxdx)dx+C]
= e^(-lncosx)[∫xe^(lncosx)dx+C] = (1/cosx)[∫xcosxdx+C]
= (1/cosx)[xsinx-cosx+C] =xtanx-1+Csecx.
9. x=0 时 y=0.
x≠0 时 y'+y/x=1/√(1-x^2),
y= e^(-dx/x){∫[1/√(1-x^2)]e^(dx/x)dx+C}
= (1/x)[∫xdx/√(1-x^2)+C] = (1/x)[-√(1-x^2)+C].