1、大数据专业一般学习的语言都是Python。Python是一种跨平台的计算机程序设计语言。 是一个高层次的结合了解释性、编译性、互动性和面向对象的脚本语言。最初被设计用于编写自动化脚本(shell),随着版本的不断更新和语言新功能的添加,越多被用于独立的、大型项目的开发。尤其是在大数据领域,使用越来越广泛。
2、也可以学习JAVA,java语言是现阶段全球范围使用最广泛的语言,在大数据领域也可以使用。
3、也可以使用R语言。R是用于统计分析、绘图的语言和操作环境。R是属于GNU系统的一个自由、免费、源代码开放的软件,它是一个用于统计计算和统计制图的优秀工具。
4、希望对你有帮助。
1、Python语言
十多年来,Python在学术界当中一直很流行,尤其是在自然语言处理(NLP)等领域。因而,如果你有一个需要NLP处理的项目,就会面临数量多得让人眼花缭乱的选择,包括经典的NTLK、使用GenSim的主题建模,或者超快、准确的spaCy。同样,说到神经网络,Python同样游刃有余,有Theano和Tensorflow;随后还有面向机器学习的scikit-learn,以及面向数据分析的NumPy和Pandas。
还有Juypter/iPython――这种基于Web的笔记本服务器框架让你可以使用一种可共享的日志格式,将代码、图形以及几乎任何对象混合起来。这一直是Python的杀手级功能之一,不过这年头,这个概念证明大有用途,以至于出现在了奉行读取-读取-输出-循环(REPL)概念的几乎所有语言上,包括Scala和R。
Python往往在大数据处理框架中得到支持,但与此同时,它往往又不是“一等公民”。比如说,Spark中的新功能几乎总是出现在Scala/Java绑定的首位,可能需要用PySpark编写面向那些更新版的几个次要版本(对Spark Streaming/MLLib方面的开发工具而言尤为如此)。
与R相反,Python是一种传统的面向对象语言,所以大多数开发人员用起来会相当得心应手,而初次接触R或Scala会让人心生畏惧。一个小问题就是你的代码中需要留出正确的空白处。这将人员分成两大阵营,一派觉得“这非常有助于确保可读性”,另一派则认为,我们应该不需要就因为一行代码有个字符不在适当的位置,就要迫使解释器让程序运行起来。
2、R语言
在过去的几年时间中,R语言已经成为了数据科学的宠儿——数据科学现在不仅仅在书呆子一样的统计学家中人尽皆知,而且也为华尔街交易员,生物学家,和硅谷开发者所家喻户晓。各种行业的公司,例如Google,Facebook,美国银行,以及纽约时报都使用R语言,R语言正在商业用途上持续蔓延和扩散。
R语言有着简单而明显的吸引力。使用R语言,只需要短短的几行代码,你就可以在复杂的数据集中筛选,通过先进的建模函数处理数据,以及创建平整的图形来代表数字。它被比喻为是Excel的一个极度活跃版本。
R语言最伟大的资本是已围绕它开发的充满活力的生态系统:R语言社区总是在不断地添加新的软件包和功能到它已经相当丰富的功能集中。据估计,超过200万的人使用R语言,并且最近的一次投票表明,R语言是迄今为止在科学数据中最流行的语言,被61%的受访者使用(其次是Python,39%)。
3、JAVA
Java,以及基于Java的框架,被发现俨然成为了硅谷最大的那些高科技公司的骨骼支架。 “如果你去看Twitter,LinkedIn和Facebook,那么你会发现,Java是它们所有数据工程基础设施的基础语言,”Driscoll说。
Java不能提供R和Python同样质量的可视化,并且它并非统计建模的最佳选择。但是,如果你移动到过去的原型制作并需要建立大型系统,那么Java往往是你的最佳选择。
这个我觉得英语应该是必须要学习的一个的,就是大数据的话,你肯定是需要懂得电脑的,懂电脑的话,必须要会英语的,所以这个大数据必须要会英语的。下面是关于数据的扩展资料。
数据
数据是指对客观事件进行记录并可以鉴别的符号,是对客观事物的性质、状态以及相互关系等进行记载的物理符号或这些物理符号的组合。它是可识别的、抽象的符号。
它不仅指狭义上的数字,还可以是具有一定意义的文字、字母、数字符号的组合、图形、图像、视频、音频等,也是客观事物的属性、数量、位置及其相互关系的抽象表示。例如,“0、1、2…”、“阴、雨、下降、气温”、“学生的档案记录、货物的运输情况”等都是数据。数据经过加工后就成为信息。
在计算机科学中,数据是指所有能输入计算机并被计算机程序处理的符号的介质的总称,是用于输入电子计算机进行处理,具有一定意义的数字、字母、符号和模拟量等的通称。计算机存储和处理的对象十分广泛,表示这些对象的数据也随之变得越来越复杂。
[1]
信息
信息与数据既有联系,又有区别。数据是信息的表现形式和载体,可以是符号、文字、数字、语音、图像、视频等。而信息是数据的内涵,信息是加载于数据之上,对数据作具有含义的解释。数据和信息是不可分离的,信息依赖数据来表达,数据则生动具体表达出信息。数据是符号,是物理性的,信息是对数据进行加工处理之后所得到的并对决策产生影响的数据,是逻辑性和观念性的;数据是信息的表现形式,信息是数据有意义的表示。数据是信息的表达、载体,信息是数据的内涵,是形与质的关系。数据本身没有意义,数据只有对实体行为产生影响时才成为信息。[2]