什么是函数的单调性?

2024-11-26 14:43:58
推荐回答(3个)
回答1:

1.函数的单调性是函数的递增、递减性的统称,单调区间也是如此.函数y=f(x)的单调性的实质是当自变量x处在一个不断变大的过程中,函数y也处在这个相应的不断变大(增函数)或不断变小(减函数)的过程中.
2.研究函数的单调性必须在定义域内进行,单调区间是定义域的子集.定义法是讨论函数单调性的基本而重要的方法,其步骤为:①设x1、x2是定义下的任意两个值,且x1<x2;②作差f(x1)-f(x2),并将差式变形、化简,目标是有利于判断符号;③判断
f(x1)-f(x2)的正负;④结论.
3.单调性与“区间”紧密相关,一个函数在不同区间可有不同单调性;单调性是函数在某一区间的“整体”性质,因此定义中的x1、x2具有任意性,不能用特值取代,如我们要证f(x)=x2+1在[1,3]上是增函数,不能因为f(3)>f(1)便认为得到证明,但此时可以断定f(x)在[1,3]上不是减函数(为什么?).
4.增(减)函数的图象在其区间D上从左向右是上升(下降)的.
5.如果对函数定义域内的任何x,都有f(x+T)=f(x)(T≠0,T为常数),则f(x)叫做周期函数,T叫做函数的周期.显然如果T是函数的周期,则nT(n为整数)也是函数的周期,故函数的周期是不唯一的,在所有的正周期中如果存在一个最小的周期,则叫做最小正周期,一般说函数的周期都是指函数的最小正周期.

回答2:

对于给定区间上的函数f(x):
如果对于属于这个区间的自变量的任意两个值x1,x2,当x1

回答3:

函数的单调性也叫函数的增减性.函数的单调性是对某个区间而言的,它是一个局部概念.
增函数与减函数
一般地,设函数f(x)的定义域为I:
如果对于属于I内某个区间上的任意两个自变量的值x1、x2,当x1<x2时都有f(x1)<f(x2).那么就说f(x)在
这个区间上是增函数。
如果对于属于I内某个区间上的任意两个自变量的值x1、x2,当x1<x2时都有f(x1)>f(x2).那么就是f(x)在这个区间上是减函数。
单调性与单调区间
若函数y=f(x)在某个区间是增函数或减函数,则就说函数在这一区间具有(严格的)单调性,这一区间叫做函数的单调区间.此时也说函数是这一区间上的单调函数。
在单调区间上,增函数的图像是上升的,减函数的图像是下降的。
注:在单调性中有如下性质
↑(增函数)↓(减函数)
↑+↑=↑
↑-↓=↑
↓+↓=↓
↓-↑=↓