解:
令x=2sint
x:0→2,t:0→π/2
∫[0:2]x³·√(4-x²)dx
=∫[0:π/2](2sint)³·√(4-4sin²t)d(2sint)
=∫[0:π/2](2sint)³·√(4cos²t)d(2sint)
=∫[0:π/2](2sint)³·2cost·2costdt
=8∫[0:π/2]sin³t·cos²tdt
=8∫[0:π/2]sint·(1-cos²t)·cos²tdt
=8∫[0:π/2](cos²t-cos⁴t)·sintdt
=8∫[0:π/2](cos⁴t-cos²t)d(cost)
=8[(1/5)cos⁵t -⅓cos³t]|[0:π/2]
=8[(1/5)cos⁵(π/2) -⅓cos³(π/2)]-8[(1/5)cos⁵0 -⅓cos³0]
=8(0-0)-8(1/5 -⅓)
=16/15
设x=2sinα,0≤α≤π/2
代入
使用倍角公式,积化和差降次,
积分函数=-4cosα十(2/5)cos5α-(2/3)cos3α十C
积分值64/15