令x=π-t,则0≤t≤π.原式=I=∫(0,π)(π-t)sin(π-t)/[1+cos(π-t)^2]d(π-t)=∫(π,0)(π-t)sint/(1+cost^2)dt=π∫(0,π)dcost/(1+cost^2)-∫(π,0)tsint/(1+cost^2)dt后一个积分是和原式相等所以2I=π∫(0,π)dcost/(1+cost^2)=πarctan(cost)|(0,π)=π[π/4-(-π/4)]=π^2/2原式=π^2/4
简单计算一下,答案如图所示