A∩(B⊕C)=(A∩B)⊕(A∩C)怎么证明(离散数学)

2024-11-30 02:02:41
推荐回答(1个)
回答1:

因为A⊕B
⇔(A-B)∪(B-A) ①

所以
(A⊕B)-C
⇔((A-B)∪(B-A)-C) 根据①
⇔(A-B-C)∪(B-A-C) ②

C-(A⊕B)
⇔C-(A-B)∪(B-A) 根据①
⇔C-(A-B)-(B-A)
⇔C∩(¬A∪B)∩(¬B∪A)
⇔((C∩¬A)∪(C∩B))∩(¬B∪A)
⇔((C∩¬A)∪(C∩B))∩¬B)∪(((C∩¬A)∪(C∩B))∩A)
⇔(C∩¬A∩¬B)∪(C∩B∩A)
⇔(C-A-B)∪(A∩B∩C) ③