已知函数f(x)=lnx, g(x)= a x ,设F(x)=f(x)+g(x).(Ⅰ)当a=1时,求函数F(x)的单

2024-12-28 09:02:42
推荐回答(1个)
回答1:

(Ⅰ)由已知a=1,可得 F(x)=f(x)+g(x)=lnx+
1
x
,函数的定义域为(0,+∞),
F′(x)=
1
x
-
1
x 2
=
x-1
x 2

F′(x)=
1
x
-
1
x 2
=
x-1
x 2
>0
可得F(x)在区间(1,+∞)上单调递增,
F′(x)=
1
x
-
1
x 2
=
x-1
x 2
<0
得F(x)在(0,1)上单调递减;
(Ⅱ)由题意可知 k=F′( x 0 )=
x 0 -a
x 20
1
2
对任意0<x 0 ≤3恒成立,
即有 x 0 -
1
2
x 20
≤a
对任意0<x 0 ≤3恒成立,即 ( x 0 -
1
2
x 20
) max ≤a

t= x 0 -
1
2
x 20
=-
1
2
(
x 20
-2 x 0 )=-
1
2
( x 0 -1 ) 2 +
1
2
1
2

a≥
1
2
,即实数a的最小值为
1
2