PC*AB=(PA+AC)*(PB-PA)
因为点C满足向量BC=2向量CA,所以AC=1/3AB=1/3(PB-PA)
则PA+AC=PA+1/3PB-1/3PA=2/3PA+1/3PB
(2/3PA+1/3PB)*(PB-PA)=1/3PB^2-1/3PB*PA+2/3PA*PB-2/3PA^2
因为PA与PB垂直,所以PA*PB=0
则原式=1/3PB^2-2/3PA^2=1/3*4^2-2/3*2^2=8/3
很简单,因为向量PC=1/2PA +1/3(PB -PA)
向量AB= PB-PA
所以向量 PC*AB=8/3