解:(1)原式=∫(1,e)2dx+∫(1,e)lnx/xdx
=2∫(1,e)dx+∫(1,e)lnxd(lnx)
=[2x+(lnx)²/2]|(1,e)
=2e+1/2-2-0
=2e-3/隐备2
(2)原式=1/2∫(0,2)d(1+x²)/(1+x²)²卜纯
=[(-1/2)/(1+x²)]|(0,2)
=-1/型携咐2(1/5-1)
=2/5
(1)∫(2+InX/X)dx=2x+∫InXdInX=2x+(InX)²/团升袜2
=2e-1.5
(2) ∫ X/(1+X^2)^2dx=1/笑耐2∫1/(1+X^2)^2dx²+1=-1/2*1/塌激(1+X^2)=2/5