解:(I)f(x)=sin2x+√3(cos2x+1)-√3=sin2x+√3cos2x=2sin(2x+π3),∵ω=2,∴T=π;(Ⅱ)由第一问确定的函数解析式及f(A)=1,得到2sin(2A+π3)=1,∴sin(2A+π3)=12,∵A为锐角,∴A=π4,∵AB•AC=√2,∴bccosA=√2,即bc=2,则S△ABC=12bcsinA=√22.