简单计算一下即可,答案如图所示
设x=rcosu,y=rsinu,方程变为r^2=2a^2[(cosu)^2-(sinu)^2],a>0时r=a√{2[1-2(sinu)^2]},kπ-π/4<=u<=kπ+π/4,k∈Z.所求面积=∫∫dxdy=2∫<-π/4,π/4>du∫<0,a√{2[1-2(sinu)^2]}rdr=2a^2*∫<-π/4,π/4>[1-2(sinu)^2]du=a^2*sin(2u)|<-π/4,π/4>=2a^2.