(1)如图:(2)AF∥BC且AF=BC证明:∵AB=AC∴∠ABC=∠C∵∠DAC=∠ABC+∠C∴∠DAC=2∠C由作图可知∠DAC=2∠FAC∴∠C=∠FAC∴AF∥BC;∵E是AC的中点∴AE=CE.在△AEF和△CEB中, ∠FAE=∠C AE=CE ∠AEF=∠CEB ∴△AEF≌△CEB (ASA)∴AF=BC.