解,An=n(n+1)=n^2+n,所以An的前n项和等于n^2的前n项和加上1+2+3+........+n 的和,由n^2的前n项和:an=n^2
(用立方差公式构造,叠加)
∵
(n+1)^3-n^3
=(n+1-n)[(n+1)^2+(n+1)n+n^2]
(立方差公式)
=3n^2+3n+1
(n+1)^3-n^3=3n^2+3n+1
∴2^3-1^3=3×1^2+3×1+1
3^3-2^3=3×2^2+3×2+1
4^3-3^3=3×3^2+3×3+1
.........................................
(n+1)^3-n^3=3n^2+3n+1
将上面n个等式两边相加:
(n+1)^3-1=3(1^2+2^2+3^2+..........+n^2)+3(1+2+3+.....+n)+n
n(n^2+3n+3)=3(1^2+2^2+3^2+..........+n^2)+3(n+1)n/2+n
∴3(1^2+2^2+3^2+..........+n^2)
=n(n^2+3n+3)-3(n+1)n/2-n
=n/2[(2n^2+6n+6)-3(n+1)-2]
=n/2(2n^2
+3n+1)
=n(n+1)(2n+1)/2
∴1^2+2^2+3^2+..........+n^2
=n(n+1)(2n+1)/6
因为1+2+3+.......+n=(n+1)n/2
所以An=n^2+n=n(n+1)(n+2)/3