(1)∵(b-2a)cosC+c cosB=0,
∴由正弦定理得(sinB-2sinA)cosC+sinCcosB=0,
sinBcosC+cosBsinC=2sinAcosC,即sin(B+C)=2sinAcosC,
∴sinA=2sinAcosC,
∵sinA≠0,∴cosC=
,1 2
又∵C∈(0,π),∴C=
;π 3
(2)由余弦定理得:c2=a2+b2-2abcosC,
∴
解得:a=1,b=3,
a2+b2?ab=7 b=3a
∴△ABC的面积S=
absinC=1 2
×1×3×1 2
=
3
2
.3
3
4