分式方程应用题
班级 姓名
1、重量相同的两种商品,分别价值900元和1500元,已知第一种商品每千克的价值比第二种少300元,分别求这两种商品每千克的价值。
2、某客车从甲地到乙地走全长480Km的高速公路,从乙地到甲地走全长600Km的普通公路。又知在高速公路上行驶的平均速度比在普通公路上快45Km,由高速公路从甲地到乙地所需的时间是由普通公路从乙地到甲地所需时间的一半,求该客车由高速公路从甲地到乙地所需要的时间。
3、从甲地到乙地的路程是15千米,A骑自行车从甲地到乙地先走,40分钟后,B骑自行车从甲地出发,结果同时到达。已知B的速度是A的速度的3倍,求两车的速度。
4、一台甲型拖拉机4天耕完一块地的一半,加一台乙型拖拉机,两台合耕,1天耕完这块地的另一半。乙型拖拉机单独耕这块地需要几天?
5、A做90个零件所需要的时间和B做120个零件所用的时间相同,又知每小时A、B两人共做35个机器零件。求A、B每小时各做多少个零件。
6、某甲有25元,这些钱是甲、乙两人总数的20%。乙有多少钱?
7、某甲有钱400元,某乙有钱150元,若乙将一部分钱给甲,此时乙的钱是甲的钱的10%,问乙应把多少钱给甲?
8、我部队到某桥头狙击敌人,出发时敌人离桥头24千米,我部队离桥头30千米,我部队急行军速度是敌人的1.5倍,结果比敌人提前48分钟到达,求我部队的速度。
9、轮船顺水航行80千米所需要的时间和逆水航行60千米所用的时间相同。已知水流的速度是3千米/时,求轮船在静水中的速度。
10、某中学到离学校15千米的某地旅游,先遣队和大队同时出发,行进速度是大队的1.2倍,以便提前半小时到达目的地做准备工作。求先遣队和大队的速度各是多少?
11、某人现在平均每天比原计划多加工33个零件,已知现在加工3300个零件所需的时间和原计划加工2310个零件的时间相同,问现在平均每天加工多少个零件。
12、我军某部由驻地到距离30千米的地方去执行任务,由于情况发生了变化,急行军速度必需是原计划的1.5倍,才能按要求提前2小时到达,求急行军的速度。
13、某商厦进货员预测一种应季衬衫能畅销市场,就用8万元购进这种衬衫,面市后果然供不应求,商厦又用17.6万元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了4元,商厦销售这种衬衫时每件定价都是58元,最后剩下的150件按八折销售,很快售完,在这两笔生意中,商厦共赢利多少元。
14、一个批发兼零售的文具店规定:凡一次购买铅笔300枝以上,(不包括300枝),可以按批发价付款,购买300枝以下,(包括300枝)只能按零售价付款。小明来该店购买铅笔,如果给八年级学生每人购买1枝,那么只能按零售价付款,需用120元,如果购买60枝,那么可以按批发价付款,同样需要120元,
(1) 这个八年级的学生总数在什么范围内?
(2) 若按批发价购买6枝与按零售价购买5枝的款相同,那么这个学校八年级学生有多少人?
15、某项紧急工程,由于乙没有到达,只好由甲先开工,6小时后完成一半,乙到来后俩人同时进行,1小时完成了后一半,如果设乙单独x小时可以完成后一半任务,那么x应满足的方程是什么?
16、走完全长3000米的道路,如果速度增加25%,可提前30分到达,那么速度应达到多少?
17、对甲乙两班学生进行体育达标检查,结果甲班有48人合格,乙班有45人合格,甲班的合格率比乙班高5%,求甲班的合格率?
18、某种商品价格,每千克上涨1/3,上回用了15元,而这次则是30元,已知这次比上回多买5千克,求这次的价格。
19、小明和同学一起去书店买书,他们先用15元买了一种科普书,又用15元买了一种文学书,科普书的价格比文学书的价格高出一半,因此他们买的文学书比科普书多一本,这种科普和文学书的价格各是多少?
20、甲种原料和乙种原料的单价比是2:3,将价值2000元的甲种原料有价值1000元的乙混合后,单价为9元,求甲的单价。
21、某商品每件售价15元,可获利25%,求这种商品的成本价。
22、某商店甲种糖果的单价为每千克20元,乙种糖果的单价为每千克16元,为了促销,现将10千克的乙种糖果和一包甲种糖果混合后销售,如果将混合后的糖果单价定为每千克17.5元,那么混合销售与分开销售的销售额相同,这包甲糖果有多少千克?
23、两地相距360千米,回来时车速比去时提高了50%,因而回来比去时途中时间缩短了2小时,求去时的速度
24、某车间加工1200个零件,采用新工艺,工效是原来的1.5倍,这样加工同样多的零件就少用10小时,采用新工艺前后每时分别加工多少个零件?
谁抄袭玩cf出门被爆,玩游戏被怪打死
甲、乙两火车站相距1280千米,采用“和谐”号动车组提速后,列车行驶的速度是原来的3.2倍,从甲站到乙站的时间缩短了11小时,求列车提速后的速度。
解:设列车提速前的速度是x,则列车提速后的速度为3.2x,则根据题意可得:
(1280/3.2x)+11=1280/x;
解x即可,别忘了验根哦!!!
设规定工期为x天:
甲单独完成工程需x天
,则乙单独完成工程需x+5天,
假设总工程为1,甲每天完成工程的1/x,乙每天完成工程的1/(x+5)
那么甲乙两队合作4天,完成工程4*[1/x
+1/(x+5)],
剩下的工程1-4*[1/x
+1/(x+5)]由乙单独完成,需要x-4天
,
可列方程:1-4*[1/x
+1/(x+5)]=(x-4)*[1/(x+5)]
解方程得:x=20(天)
方案一:工程款=1.5*20=30(万元)
方案二:工程款=1.1*25=27.5(万元),但是延误了工期,不可取。
方案三:工程款=(1.5+1.1)*4+1.1*16=28(万元)
所以应该采取方案三.
1.解:设第一种商品每千克的价值为X元,则第二种商品每千克的价值为(X+300)元,依题意,得
900/X=1500/X+300
原方程两边同乘X(X+300),得
900(X+300)=1500X
解得X=450
检验:当X=450是X(X+300)≠0,X=450是原方程的解。
X+300=450+300=750(元)
答:第一种商品每千克的价值为450元,第二种商品每千克的价值为750元。
(我也是初二的,不知对不对,你自己看看- -)
5.由题意知,甲和乙的效率之比为3比4
设每一分子为X,可知
3X+4X=35
X=5
∴甲每小时生产15个零件
乙每小时生产20个零件