其实简单的来说,大数据就是通过分析和挖掘全量的非抽样的数据辅助决策。
大数据可以实现的应用可以概括为两个方向,一个是精准化定制,第二个是预测。比如像通过搜索引擎搜索同样的内容,每个人的结果却是大不相同的。再比如精准营销、百度的推广、淘宝的喜欢推荐,或者你到了一个地方,自动给你推荐周边的消费设施等等。
很多新手刚开始会考虑自学大数据,时间安排自由,但是新手如何自学大数据是个相当严峻的问题,看视频学大数据可以吗?可以,但问题的关键在于你要找出优质的大数据视频教程,然后要确保自己在学习中无遗漏,并且最好是伴随着你相应的笔记。
新手自学大数据中,特别注意的是要进行项目练习,大数据在刚接触时会有些新鲜感,但是接下来就是一些乏味感,一味的只看不练,那么学起来更乏味,大数据本身也是门需要大量项目练习巩固知识的专业,不多多进行项目练习,那么很大程度上就等于白学,学不能致用。
新手自学大数据难吗?其实相当有难度,大数据知识学习起来其实还满杂的,既得学大数据基础,又得掌握很多统计学等等的知识,自学大数据一个人的视野也毕竟有限,遇到难题时,想找个人一起商讨如何解决,难,想证明自己所做的数据分析正确全面,但是无人可证。
没有基础的,我是建议去找一个专业的学习去学习,会大大的缩减学习时间以及提高学习效率
按照下面五个阶段开始学习,循序渐进!
(1)Java语言基础
Java开发介绍、熟悉Eclipse开发工具、Java语言基础、Java流程控制、Java字符串、Java数组与类和对象、数字处理类与核心技术、I/O与反射、多线程、Swing程序与集合类
需要大数据学习教程,关注我主页有资料
(2) HTML、CSS与JavaScript
PC端网站布局、HTML5+CSS3基础、WebApp页面布局、原生JavaScript交互功能开发、Ajax异步交互、jQuery应用
(3)JavaWeb和数据库
数据库、JavaWeb开发核心、JavaWeb开发内幕
Linux体系、Hadoop离线计算大纲、分布式数据库Hbase、数据仓库Hive、数据迁移工具Sqoop、Flume分布式日志框架
(1)分布式计算框架
Python编程语言、Scala编程语言、Spark大数据处理、Spark—Streaming大数据处理、Spark—Mlib机器学习、Spark—GraphX 图计算、实战一:基于Spark的推荐系统(某一线公司真实项目)、实战二:新浪网(www.sina.com.cn)
(2)storm技术架构体系
Storm原理与基础、消息队列kafka、Redis工具、zookeeper详解、实战一:日志告警系统项目、实战二:猜你喜欢推荐系统实战
数据获取、数据处理、数据分析、数据展现、数据应用
Data Analyze工作环境准备&数据分析基础、数据可视化、Python机器学习
1、Python机器学习
2、图像识别&神经网络、自然语言处理&社交网络处理
实战项目:户外设备识别分析
以上就是分享的大数据自学课程,祝愿每一位小伙伴都能成为真正的大数据技术人才!
学习大数据,就来北京尚学堂,多年的大数据授课经验,扎实的课程理论助你在大数据方面快人一步。
大数据相对来说更适合有基础的人学习,学大数据一定要有方向,按照大数据路线图学习就可以了,包括8个阶段,希望你早日学有所成。