设f(x)在x=0的某领域内二阶可导,且limx→0(sin3xx3+f(x)x2)=0,求f(0),f′(0),f″(0)及limx

2025-01-04 01:19:55
推荐回答(1个)
回答1:


因为:

lim
x→0
(
sin3x
x3
+
f(x)
x2
)=
lim
x→0
sin3x+xf(x)
x3
lim
x→0
sin3x
x
+f(x)
x2
=0,
所以:
lim
x→0
(
sin3x
x
+f(x))=0

又:f(x)在x=0的某领域内二阶可导,
所以:f(x),f′(x)在x=0连续,
从而:f(0)=-3.
lim
x→0
sin3x
x
+f(x)
x2
=0

得:
lim
x→0
sin3x
x
?3+f(x)+3
x2
=0

又易知:
lim
x→0
3?
sin3x
x
x2
lim
x→0
3x?sin3x
x3
lim
x→0
3?3cos3x
3x2
=
lim
x→0
3sin3x
2x
9
2

故:
lim
x→0
f(x)+3
x2
9
2

从而:f′(0)=
lim
x→0
f(x)?f(0)
x?0
lim
x→0
f(x)+3
x
lim
x→0
x?
f(x)+3
x