因为:
(lim x→0
+sin3x x3
)=f(x) x2
lim x→0
=sin3x+xf(x) x3
lim x→0
=0,
+f(x)sin3x x x2
所以:
(lim x→0
+f(x))=0.sin3x x
又:f(x)在x=0的某领域内二阶可导,
所以:f(x),f′(x)在x=0连续,
从而:f(0)=-3.
由
lim x→0
=0,
+f(x)sin3x x x2
得:
lim x→0
=0,
?3+f(x)+3sin3x x x2
又易知:
lim x→0
=3?
sin3x x x2
lim x→0
=3x?sin3x x3
lim x→0
=3?3cos3x 3x2
lim x→0
=3sin3x 2x
,9 2
故:
lim x→0
=f(x)+3 x2
,9 2
从而:f′(0)=
lim x→0
=f(x)?f(0) x?0
lim x→0
=f(x)+3 x
x?lim x→0
f(x)+3 x