a,b,c为正实数,且a+b+c=1,求证1⼀a+1⼀b+1⼀c>=9

十分紧急,急需
2025-01-24 09:37:23
推荐回答(3个)
回答1:

可以算2/a+2/b+2/c=(1/a+1/b)+(1/b+1/c)+(1/a+1/c)比如头一个括号里的大于等于2根号下(1/ab),当且仅当,a=b,其它的同于,所以只有当A=B=C时,有最小值,A+B+C=1,A=B=C=1/3.所以1/a+1/b+1/c>=9

回答2:

已知a,b,c属于正实数,且a+b+c=1,求证1/a+1/b+1/c大于等于9
1/a+1/b+1/c
=(a+b+c)/a+(a+b+c)/b+(a+b+c)/c
=1+(b+c)/a+1(a+c)/b+1(a+b)/c
=3+b/c+c/b+a/c+c/a+a/b+b/a (由于b/a+a/b>=2,c/a+a/c>=2,c/b+b/c>=2)
>=3+2+2+2
=9

回答3:

用乘1法(1/a+1/b+1/c)*1=(1/a+1/b+1/c)*(a+b+c)=1+b/a+c/a+1+a/b+c/b+1+a/c+b/c=3+a/c+c/a+b/c+c/b+a/b+b/a>=3+2+2+2=9