凸函数的定义如下:
对于一元函数f(xf(x),如果对于任意tϵ[0,1]均满足:f(tx1+(1−t)x2)≤tf(x1)+(1−t)f(x2)f(tx1+(1−t)x2)≤tf(x1)+(1−t)f(x2),则称f(x)f(x)为凸函数,同时如果对于任意tϵ(0,1))均满足:f(tx1+(1−t)x2) 函数的特性 1、有界性 设函数f(x)在区间X上有定义,如果存在M>0,对于一切属于区间X上的x,恒有|f(x)|≤M,则称f(x)在区间X上有界,否则称f(x)在区间上无界。 2、单调性 设函数f(x)的定义域为D,区间I包含于D。如果对于区间上任意两点x1及x2,当x1